

MPSoC presentation

Predictable and Composable Multiprocessor Systems for Car-Entertainment. Part 1: business view

René van den Berg System Architecture Innovation NXP Semiconductors BL Car Entertainment Solutions The Netherlands Marco Bekooij, Kees Goossens

NXP Semiconductors Research The Netherlands

Presentation outline

- Car infotainment market
- Important car applications aspects
- Car entertainment implications
- Key challenge

Global Light Vehicle Production Forecast by Manufacturer

Car infotainment ICs will be a \$4,7 billion market by 2014

World (US, EU, Japan, China, Korea, India) semiconductor market for major car infotainment applications

Different types of car applications

Car environment aspects

- Car environment creates unique challenges for infotainment system design
 - Audio and Reception environment Changes in signal strength & direction, multipath reflections, Doppler effect, Noise, speaker distance, etc.
 - Multi-user devices Head units increasingly becoming "infotainment hubs", which need to serve the individual needs of several occupants simultaneously
 - Driver distraction Driver distraction must be minimized as the main operator of the system might at the same time be driving over 100 km/h.
 - Very high quality and reliability requirements – field returns are costly as the complete car needs to be returned to the garage

Trend implications

- Support for multiple sources, sinks of data and multi-users at the same time
- Demand for greater flexibility regarding feature sets, regions (multiple standards) and time
- In-car systems will have to become cheaper and more flexible to compete with portable device. Functional integration to keep the cost down
- Sophisticated user interfaces become key technologies which reduce driver distraction becomes key
- Increased focus for powerful, multi functional chips, within the context of scalable platforms
- Growing importance of software and upgradeability

Reuse for different types of car systems

Distributed

Centralized

Several boxes in different locations in the car

One head unit with functionality combined in one box

7

System implications

- Originally, distributed systems serve the aspect of separation of concerns
- To reduce overall systems costs of lower end systems, functional integration and resource sharing is required
- Integrating all functionality into single powerful multi-core chips
- Temporal isolation of functional domains becomes key to:
 - Create and control complex designs
 - Avoid disruptions of neighbour subsystems if
 - a subsystem is fully verified and validated and behaves correctly
 - a subsystem malfunctions
 - Test and validate subsystems before final integration
 - Reuse subsystems in new designs

9

Conclusion

temporal isolation

is key to car entertainment systems and applications

for adding and reusing subsystems

